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I. INl RC)!JUC! [0'\

Let d,' and r. d, he metric spaces. and C L( Y) denote the dOS<:0

nonernpty subsets of Y. By a mult[fimclioll from .Y to r we mean a function
l':.Y > eL( Y). By a selection I for I we rnean a function r X r :,w:h that
for each .\. ) (= F(.\'). The systematic swdy of conrinuous ,;elections begin,;
with the papers of Michael (sec. e.g" j 12 J it survey of Ihe literature i,1Ii

measurable selections (with respect to sorne o algebra of suhsets on Xl has
been compiled by Wagner in 117l and! 18

The term approximate selection means dlCfcn:nt thing, to different people.
Relative to the work of Michael 121. rkutsch and KetH..lenh aqd Oieeh
i141· an approximate selection 1'01 ! is H function r, ;';uch that ;11 each
.\ III .r. /(.\1 i~: close to some pfllnt "I nv.). \\ie me Interc·.led in rather'
different notion studied by CcUina i4 (J i and Reich 151. wl!uc an appro,
Imalc selection ,I' for r is une such that the of and 1 ;m: ·'c:ios'.::
where close is defined in a strong or weak sens,'. Explicitl) C h ti sct
metric space. let 5', lei denote the union of ali npen balls '.vhose centers rt.m

over C ['vtelrizc ,r r using the metric r>:Jined bv !.J i(x:, I. (I'.

max (.v.1,x,i. d,UI-.;·,):. Idcntif\ing ,} and f:r-eLi .I with

their graphs. we say f l1'eakfr ( appru.'(imafes r if'S.1 I'i If. in addition.
we have SIr. then we say that j Slrollgl!' /:-approximates {.

Thc results of Ccllina and Reich are restricted to a particular ciass
multifunctions. We call f:.Y ,r upper semicontinuolis J at x in ..\
for each I: () there exists.l 0 such that /(S\ jxj} S,I/{.'II. (A stronger
rcquirement would be that given any neighborhood V or l(x) there ex ist,
;, "> 0 such that F(SI Ix j) V. In the literature this property usually caJled
upper scmicontinuity. whereas ours is called Hausdorff upper semicontinuit\
18\.) Let}' be a normed linear space. Basically. Reich and Ccllina havc
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,-\l! right:,. of fcprnulJCtton many fiH1l1 n:SI.:TI;c>tL
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asked: When does there exist either a strong or weak /:-approximate selection

for an u.s.c. convex valued multifunction r: X·--; CL( Y)? The existence of
continuous strong [-approximate selections for such multifunctions is also

considered in the present paper. and we obtain a much more inclusive result
than the main theorem of [5 [. We also ask a different question: If a

continuous strong c-approximate selection for r does not exist. can we still
strongly [;-approximate r by relatively nice functions'? In the sequel the term
c-approximate selection shall mean a strong capproximate selection in the

above sense.
Before proceeding we set forth some additional notation and terminology

Let X and Y be metric spaces and let f: X -~ Y be arbitrary. D(~note the

closure off as a subset of )( X Y by I For each x in X the limit set LU x)

of f at x is j y: (x, y) E ]1. By the sequential characterization of the closure

of a set in a metric space

Using the trivial sequence Xl = X. X 2 = x ..... we see that f(x) E L(J;y). Iffis
continuous at x, then L(1, x) = U(x)/. but not conversely. The class of

functions/for which LU x) = U(xll for all x is simply those functions with
closed graph; these are the subject of a recent monograph of Hamlett and
Herrington 110 I. The multifunction r/: X-. CL( Y) defined by lIt) = LU x)

will be called the limit set multi/unctioll induced by I If I: X --> CL( Y) and

1= r: for some 1, we call / a dense selection for r [21. If f: X • Y we denote
the set of points of discontinuity off by D(f). The function I is said to be of

Baire class one if the inverse image of each open subset of Y is an F" subset
of X. Since each open subset of X is an Fu set, the Baire class one functions
include the continuous ones. For a thorough study of this class of functions.
the reader should consult III [ (where these functions are called B­
measurable of class one). If f: X --+ R. the support off denoted by supp(f).

is the closure of the set jX: f(x) 1= 0 f.
The closure. set of limit points. and interior of a set C in a metric space

will be denoted by C. C. and int C. respectively. If K is another set in the

metric space and there exists I: >0 for which both S,IC[J K and
S, [K [ ) C. then the HausdorH distance 0 between C and K is given by

o[CKI=inf\c:S,ICI KandS,[K! Cr·

Further information on this notion of distance can be found 111 Berge [3 [.
Kuratowski [Ill, and Nadler [131.

Once again let Y be a normed linear space. Even when X and Yare very
nice we cannot [-approximate each u.s.c. convex valued multifunction

h40:(j'2 h
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I: X ".~ CL( Y) by continuous functions. For example. I: 10. I I·, CL(R)
defined by

r(x) = R,

= 101,

if x O.

otherwise.

admits no such approximations. However. for each I; O. I as described
above can be I:approximated by a discontinuous function. Ignoring Borel
classification issues for the moment. there arc certain obvious necessan
conditions that a convex valued u.s.c. multifunction r: X. C L( Y) must meet
to admit some I:-approximate selection. Fix x in .Y. By Zorn's lemma there is
a subset vV of FIx) such that for each Y I and .1': in /1/, I r i r. 21: and
nx) c S 2/ i!tl Now if Ix 11\") is to he a subset of S(\f! for :;om<:
1:.K • Y. it follows that the cardinality of S Ixj must be at least that of tV
In particular. r must map isolated points to singletons. limit points that ilrl:
not condensation points to separable sets. and so forth. In order to ',late
"nontechnical" results valid for multifunctions defined on an arbitrary metric
space X. we choose to require that the values of I be separable subsets of l
Thus. our cardinality conditions reducc to the single condition: r maps
isolated points to singletons.

We will show that if X is a metric space. Y is a normed linear space. and
I: X .. eli Y) is an u.s.c. multifunction mapping isolated points to singletons
such that for each x. F(xl is a separable convex set. then r can be
approximated by a Baire class one function whose limit set multifunction J"

both u.s.c and convex valued. Put differently. the convex valued u,~"c.

multifunctions that admit Baire class one dense selections are dense in the
separable convex valued ll.~,C. multirunction~. equipped with the Hausdorfr
metric topology as applied to their graphs. Moreover. if r has totall\
bounded values. then for each i: °there exists a continuous X. Y such
that 151.1: Fi If Y R", we will show that for each i ',0 there exists ,1

Baire class one I'"approximate selection for l' with a closed graph.

2. PRELIMINARY LFM'\fAS

A prime use of locally finite covers and partitions of unity subordinated to
these covers 19. p. 170 j is to piece together continuous functions defined
locally to obtain a globally continuous function with prescribed properties.
Specifically. let Wi: i E If be such a cover of X. let I p,r·): i E If be a
partition of unity subordinated to the cover. and for each i let J; : U;> y
(where Y is a normed linear space) be continuous. For each i we understand
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the symbol pJ; to represent a function on X (rather than on just Vi) by
requiring that pJ;(.') be zero off Vi' Then f: X --+ Y defined by

f(x) = '\ ' Pi/;
i;:J

is well defined and continuous. Our first two lemmas show that if we piece
together discontinuous functions defined locally. then certain common
qualitative aspects of their limit set structure are often preserved.

LEWvlA I. Let X be a metric space and let Y be a normed linear space.
Let Q be a family of closed subsets of Y closed under translations and maps
of Ihe form .1'-> ay (a :> 0). Let 1Vi: i E If be a localz), finite open COl'er q( X.
and leI j p;(.): i Eli be a partition (~f unity subordinated to Ihe cOl"er.
Suppose for each index i. ./;: V i -> Y has the following properties:

(1) For each x in V,. LU;. x) E Q.

(2) For each x in X. at mosT onc'/; is discontinuous al x.

(3) For each x in Vi' pJ') = 0 implies j; is continuous at x.

Suppose I C~ ~ pJ;. Then lor each x in X H'e hal'e L(.f: x) E Q.

Pro0(: Since locally there exist indices i I' i" ..... ill such that I =

~;' I pili, and for each open set V the limit sets of f I V agree with the limit
sets off at each point of V. it suffices to show that for each i and k in I the

function g = Pi/; + Pk fk has limit sets in Q. We first show this to be true
for Pi/;' We consider the possible locations of a variable point x on X. If
,E supp( pJ then Pi'/; is zero in a neighborhood of x. whence L(Pi'/;' x) is
a singleton. and therefore in Q. If p;(x) *' O. then x E Vi and L(p,.f,. x) =

p,(x) LU;. xl. a homothetic image of LUi' x). Here. too. L(p,./;. x) is in n.
Finally. if xESUPP(Pi) and pJ')=O. then by condition (3)

L( Pil;. x) = 101. We now show L( g. x) E Q at each x. This is clearly true if
g is continuous at x. Otherwise. w.l.o.g .. we may assume pJi is discon
tinuous at x. Then x E Vi and I, is discontinuous at x. By (2) . ./; and

therefore p"fk are contin'Jous at x. It now follows that L(g. x) = L(PiJ;. x) +
Pkfk(x). a set which is zgain in n by the first part of the proof.

There are many possibilities for the family Q of Lemma 1: the singletons.
the convex sets. the star-shaped sets. the bounded sets. the finite sets. the
flats. etc. Of course. we will be interested in the first two configurations just
listed. To appreciate the need for conditions (2) and (3) in the statement of
Lemma I. we present two simple constructions.
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EXAMPLF 1. Let f: R -t R be defined by

/(x) ~~- il x / O.
X

O. \ O.

Then f has singleton limit sets. i.e., its graph is closed. HO\\ ;:ver. if Pl·Y )
then L(pf., 0) = jO, I f. a nonconvex set. If h: R ~+ R is defined by h(x)

- fIx) if x *0 and h(O) = I. then h also has singleton limit sets wherea~

L(f +h. 0) 10. 1f.

LEMMA L Let X be a metric space and let Y be a normed linear space
Let 1Ui : i E: I f be a loca/(v finite open corer 0./ X. and let Pit·): i (= /: be a
partition of unity subordinated to the COl'er. Suppose jiir each i E I.
t;: U,' Y has the following properties:

(J) The limil scI muijunctiol1 l"t./br./; is U.S.c. on U,.

(2) For each pair oldislinet indices i anc! k. lI'henecer \" E=: D(j". then
x if supp( p,).

Theil the limit set multijimctioll for f ~ pd, is U.s.c. Oil ,\

Pro(~{ As in the proof of Lemma I it suffices to show that for each! and
k the limit set multifunction for g = P;J;+- Pkj~ is U.S.c First. we show that
the limit set multifunction for P,.!; is U.sc. If P,J; is continuous at .\. \\C

obviously have upper semicontinuity at x. Otherwise. by condition (2) and
the definition of partition of unity. the multifunction agrees locally with! I,

and must he also U.S.c. by (1). To show the limit set multifunction for g is
U.S.coo fix x in X and let I: '> O. W.l.o.g. wc may assume that p, J; is
continuous at x. By the first part of the proof there exists I, > 0 such that
whenever d(x, z) <}.. then L(Pij~. z) C S'2IL(piI. x)1 and Pd';(z)
p,j;(x)ll < [;/l. From the above inclusion. whenever iI(:::. x) !" then
PiJ;(Z} E S'2IL(piJ;. x)l, and it follows that

g(z} E S'/2IL( Pi.!;' x) 1+ 5'2 i /\'/;(x) I
c 5 , IL(Pi.I;. x) +p"I;(x) 1;:= S,IL( g. x) I·

This implies that L(g. z) c 5, IL(g, x}1 whenever d(z. x) < L

Although a somewhat weaker condition may be substituted for condition
(2) of Lemma 2, conditions (2) and (3) of Lemma I do not suffice.

EXAMPLE 2. Let }" = '2' the Hilbert space of square summable real
sequences, with the usual norm. Let C be the following closed convex subset
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of Y:C=jjair: for each iEZ', ai~n. Define r:R-->CL(Y) to be the
constant multifunction Hx) == C. By Theorem 5 of 121 r has a dense (Baire
class two) selection f. i.e.. for each x in R, LU x) = C. It is easy ItO cheek
that for each a > 1 and each E ') 0, the set S ,I C I fails to contain aC. Hence
if p: R-> (0, I) is an arbitrary strictly increasing function. it follows that
.Y-' L (pf., x) = p(x)C fails to be (right) u.s.c. at any point of R. Hence.
although p(x) is positive at each point of discontinuity off., p.ffails to have
an u.s.c. limit multifunction.

Our next two lemmas involve the local definition of functions.

LEM~lA 3. LeI X he a melric space and let }' be a normed linear space.
Let Xii E x r and let K be a closed ball with center x". rf V K is opcn and
C Y is a separable closed cOllvex sef, thcn jbr each r )- 0 thcre exists
h: I' ,C such that 6Ih(K). CI ~ I: and

(I) D(h) \x,,~.

(2) The limit set multifullction j(Jr h is U.S.c. and cOIll'ex calued.

It C is towlh bounded, then h can be chosen coIllilll/Ol/S.

Pro(i( Suppose first that C is totally bounded, Choose \ YJ' r".... :,,! in
C such that S,IIYJ' y; .... , y"f!-) c. Let Ixl,x; ......\,,1 c K be arbitrary. By
the Dugundji extension theorem 19, p. 1881 there exists a continuous
h: /', C such that for j l. 2..... n. h(.\) = .ri' Clearly. (5Ih(K). CI I:. If C
is not totally bounded. let; Yj: j E Z' I be a countable dense subset of C. Lei
:x be a sequence in K convergent to X(I. and let iSt[xJjE Z : be
pairwise disjoint open balls none of which contains xo' For each k E: Z' let
E)( : p: p E Z' and p 2' 'q. ",vhere 2 and q arc relatively prime I. For
each j E Z' define h(.\) to be y" where k is the unique integer for which
i E. Now extend II to j' as follows:

if d(x. x,) <

othenvise.

Notice that for each x in V. hex) is a convex combination of .1', and 1', for
some k > I. Thus. h( V) c C. Since limj>f Ai 0 and lim; ., Xi =:co > it is
evident that X(I is the only point of discontinuity of II. By the construction for
each k E Z' the point h in is L(h. XII)' and since L(h, x o) c li( V) c C. it
follows that L(h, x o) = C. The upper semicontinuity of x --> L(h. x) on V is
obvious. as is 61 !l(K). c I O.

LE~lMA 4. LeI X be a metric space and let R" be II-dimensional
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Euclidean space. Let X o E X' and let K be a closed ball \vith center\Il' Ij
V:::J K is open and C c R" is a closed convex set. then there exists h: V~. C
with a closed graph such that 61 h(K). C \ I:.

Proof W.l.o.g. we can assume that 0 E C. If C is bounded. then C IS

totally bounded. and we are done by Lemma 3. Otherwise. by Theorem 8A
of 116\ there is a nonzero vector Yo in C such that for each l' in C, l'i 1'" is
again in C (such a vector is called a direction of recession for C). Let
{y,:jEZ ! be a countable subset of C such that CcS,!iy,:jE 7 'I.
and whenever k *- j. II YA ? I;. Since this set is closed and discrete. for
each n E Z' only finitely many elements can lie in S" 10 I. Let \, and
1S, IxJ .i E Z . 1 be defined as in the proof of Lemma 3. For each j (: 1:
definehj:lx:O<d(x.x,) Air ·Cby

d(x.x j )!"

Notice that as x approaches either Xi or the boundary of S \ Ix,!. hJYlii
approaches infinity. Finally. define h: V -4 R" by

h(x)= Yi'

= hi(x).

= Yo'

if for some j. x ,,"c ,\,.

if for some j.O < d(x. x) < <.
otherwise.

By the above remarks concerning each h j • the closedness of the graph of h is
only at issue at x = X o ' However. since infill hj(.dl: 0 < d(x'\j) )'i' > j .I" i

and lim;'f Ilh(x;)11 = 00. whenever lzd'" Xo' then either :h(zJ • r" or
1h(zkl} fails to c~nverge. Thus. L(h. x ll ) = : Yo: =-~, lh(x,,) f. and the graph of h
is closed. Clearly. h( V) c C. and since h( ix j : j E 7' i) CO"" ; 1';: j E 7 I. wc

have 6Ih(K). CI ~ I:.

We need one more lemma before our main results. It is a key one.

LEMMA 5. Let X be a metric space lI'ith (X')' nonempty. Let V be an
open set containing (X')'. Then there exists a pair of open seis G 1 and G,
such that G, n G) = 0. G 1 U G) = X. and (X')' c G 1 C V

Proof Since (X')' is closed and X ~ V is closed, by normality there exist
disjoint open sets U and U* such that X -- V c U and U* (X')'. For each
x E X' - V there exists ex E (0. J) such that S.)x 1 contains no other limit
point of X and S,xlxl c U. For each such x let A., = ~Dc We now show that
the open set

H U lS',lxl: x E X' -- Vf
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is also closed. Suppose 1Z n I is a sequence in H convergent to some point z.
For each 11 choose x n E X' ~ V such that d(x". zn) < A" Now

limn.! d(xn , z) *O. or otherwise z E (X' l'. However. for each ,;." zn E U.
whence z E X V*. This contradicts (XI)' c V*. By passing to a subse­

quence we can assume limn>', d(x". z) exists and is positive~ We then have

0< lim d(x n , z)= lim d(xn • z,,)
n·'/ /1","(

~ lim ioU,
11 ....;11

< lim inf f;",
n of "

In particular, there exists NEZ' sllch that d(x,. z) < I: x ,' Thus. unless }
is constant eventually. 5, lx, I contains a limit point of X in contradiction to

'x,

the choice of Gx , . Thus {z n I must be constant eventually. and z E H follows.
Finally, let Gj = V·- H and let G2 =X G j • From the preceding

discussion, G1 is open. The set G2 consists of the open set H plus the isolated
points of X belonging to neither G j nor H. This latter set is clearly open; so.
G) is open.

3. THE MAIN RESULTS

The vehicle we use to pass from functions Ui: i E I ~ defined on elements
of some locally finite open cover \Ui : i E II of X that are each close locally
to a convex valued U.S.c. multifunction r to obtain an E·approximate
selection / for r defined globally is a slight modification of an argument
buried in the proof of the main theorem of 151. We single it out as a lemma.

CELUNA'S LEMMA. Let X be a metric space and let Y be a normed
ionear space. Let r: X -t CL( n be u.s.c. and convex valued. Suppose there
exists a local(v finite open cover iVi ; i E f} ofX. and for each i E I a closed
set Ki • a point b i , a number Ai' and afunction/;: Vi'~ r(b i ) such that

(I) K;cU i cS\/2[b;\.

(2) )'i < f: and r(SI/lbiD c Sc/21r(b i ll.
(3) Whenever i * k. then K, n Uk = 0.

(4) O!};(KJJ(b i )! ~1;/2.

Suppose i Pi('): i E If is a partition 0/ unity subordinated to the COl'el'

IVi: i En· Then the function f ')' hI; satisfies olJ: r] ~ 1:.
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In the proof of the main theorem of 151, X is a metric locally convex
space, each set Ki is convex, each.l: is continuous, and r is assumed to have
totally bounded values. However, none of these assumptions are used to
prove the above lemma (the details of which are left to the reader), a fact we
shall now exploit in conjunction with the results of the last section.

THEOREM I. Let .A' be a metric space and let r be a !lImned lincUi
space. Let I:X -t eL( Yl he WI U.S.c. mult(/l<llctioll \j'rlh the j(Jl!Oll'illg
properties:

( I) I maps isolated points I!.! X 10 single/oils.

(2) For each x in X, /(X) is a separable cOllrex IC!

Theil there eXISis u Baire class olle '/II/1CIIOII f: X ,} ,\l1ose /ZlIlll \('/

multi/unclioll is U.S.c. and conrex ralued such that ()I.r II I.~.! the rallics
(i/ r are each totalzr bounded, t!leni can be chosen cOIl/inuuu\.

i
'
\\ J.
, is simply
d(::, x) 'c

that

Proll We first consider metric space~ X for whIch it IS empty. 11.\

is empty. then by (I) r itself is a continuous single valued function. and
there is nothing to prove. Otherwise. for eachy in Y' choose () such
that (i) S.! 1\ contains no other limn poinl 01'\. (1;1

d(x. z) t, then /(::) ( S', nX) i Set Ii 51,.

point of If belongs to a unique bal! S, Ix the upen (over " . IX I
of If iocally finite fhe onh partition or
subordinated to the cover IS the one for WhICh each functtoli
characteristic function of S t Ix For each x in Xl let A

By Lcrnrna 3 ,here eXIsts , : S " Ix i ,1'(x)

6I.1",(K,}- !I\)! (ii) nUl) lX. and (lil) [he limI!;,·j rnulul'unCl!(li'

for .l', b comcx valued and u.s.c. If the values of i an: bounded. tilt ,j

each such ('unction can be chosen cuntlnwlus Jd 'f/ } be :!i\t~11

\ Nute that for t~ach !! L : ,~ ,'here "theI

limit point of X for which eli:. x) < i ... By Cellina's lemma 'll I' r f{ i
The hypothese~ of Lemmas and) are al~o satisfied: the limit sci
multifunction for II is both U.s.C. and convex valued. Also. smce Dill) is Ij

closed discrete sel. /; is of Baire class one. and if each ( is continuom, S(l

The POIl1!S of X not in f{ are isolated; so. for each such point .\ tilc
nx) is a singleton. Define (,: X H·~· hy j~(x) nv) Finalh, define
f: X > Y b}

f(x) = ;; (x),

= .l~(x),

if .\ t.:: If.

if x f~ X ll.



APPROXIMATE SELECTIONS FOR MULTIFUNCTlONS lSI

Since D(f) = DUj), the function f is of Baire class one. If II is continuous.
then since H and X - H form a separation of X, the function / will be
continuous, too. For the same reason, the values of j~ (resp. ./~) have no
bearing on the limit sets of j~ (resp. II)' whence the limit set multifunction
for I is both U.S.c. and convex valued. Clearly. 011. 1'1 ~ I;.

We now consider ): for which (X')' is nonempty. For notational
simplicity we write F for (XT. For each x in F choose I" < c such that if
:: E X and d(z. x) < A,. then T( z) c S, 2 IT(x) I. Let ~V = U IS \ ,. 2 Ix I: x E: F:
and let {Vi: i E I fl \ be a local Iy finite open refinement of the cover
LS\2Ix I: x E Fl of W. Define I c In as follows:

Set V U j Ii;: i Elf: the collection j V, : i Elf is a locally finite open cover
of f.", By Lemma 5 there are open sets G 1 and G, such that (i) G I U G, X.
(ii) G,('IG 2 =0, and (iii) F (;1 l'. For each iEI set V:'=G I V"
Notict: that for each index i the open set V; contains infinitely many limit
points of .r. Hence. reasoning as in Proposition I of 151. there is an injection
i· (I, defined on I such that for each i both (Ii E V and (I, is a limit point of
X. We now proceed as in the proof of the main theorem of 151. There is a
collection of pairwise disjoint closed balls IK i : i En such that for each
index i. (/, E tnt K, c Vi", For each i the set

C, UK;
I.

is open and contains Ki • Furthermore. i Ui : i t~ I i is a locally finite
refinement of the cover j V';": i E If of G I • Since iVi: i E If is a refinement of
;SI" !xl: xE Fl, for each i we can find hi in F such that for each:. in C',.
ci(:., hi \ 1Ahi Again by Lemma 3 for each index i there is I: U i • nh;)
such that (i) (51I(K i ), r(hi)1 ~ e/2, (ii) D(Il = {ad, and (iii) the limit set
multifunction for I is both convex valued and u.s.c. If the values of Tare
totally bounded, then each such ./; can be chosen continuous. Let
{Pi(' ): i E If be a partition of unity subordinated to j Ui : i E If. Since
whenever i,* k we have K j n Uk 0. Lemmas I and 2 and Cellina's lemma
all apply: the function gl: G j -> Y given by gj ~ Pi.!; satisfies
(51 ,(;1' Fr Gil ~ {;, and the limit set multifunction for gl is both u.s.c. and
convex valued. Since D( g 1) = {a i : i E If. a closed discrete set. g I is of Baire
cl ass one. As usuaL if for each index i the function.f; is continuous, then g I is
continuous.

Finally. by the first part of the proof there exists g2: G, --. Y such that (i)
()lg,.!'!G,I~I:. (ii) D(g2) is a closed discrete set, and (iii) the limit set
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multifunction for g2 is u.s.c. and convex valued. If I has totally bounded
values, then g2 can be chosen continuous. The function f: X ., Y defined bv

is the desired function.

/(x)" gl(x).

g2(X).

if x E, G I'

If xE G,.

THEOREM 2. Let X be a metric space and let I: .X, CUR") he a
convex valued u.s.c. multifunction mapping isolated points to singletons.
Then there exists a Iunc/ioll f: X, R /I with a closed graph such Ihal

()If TI <r.

Proof Recall that the functions with closed graphs are precisely those
with singleton limit sets. Lemma I thus applies to this class of functions.
Hence, the proof of Theorem 1 goes through intact. except that we invoke
Lemma 4 in lieu of Lemma 3.

It should be noticed that in the statement of Theorem 2 it is not claimed
that the limit set multifunction for I is u.s.c" nor is it claimed that f is Df
Baire class one. Indeed. the upper semicontinuity of the limit set
multifunction for a function with closed graph implies continuity of the
function. On the other hand, by virtue of our next result, the statement that f
is of Baire class one is redundant.

TIIEOREM 3. Let X be a metric space alld let Y he a separable loca[[\
compact me/ric space. iff: X ..~ Y has a closed graph. Ihell I is of Baire class
one.

Proof The proof of Theorem 1.6.2. of 110 I shows that DU) is a closed
set. Let G be an open subset of Y. Since D(f) is closed. I I (G) Ii

IX - D(f) I is an open subset of X. Since open sets in a metric space are F"
sets. it remains to show that I I (G) Ii DU) is an F" set. By our
assumptions for Y. G may be represented as a countable union of compact
sets G U/ I K i • We claim that for each index i the set.r I(Kiln D(j') is
a closed subset of X. Suppose {xd is a sequence in f I(Ki}liD(j'l
convergent to some point x. Since DU) is closed. x E D(f). Since K i is
compact. V(x,)! has a subsequence convergent to some point y in Ki • By
definition.\' E L(j, x), and since L(j, x)= U(x)f. we have .\" E.r I(K;).

We leave it to the reader to show that Theorem 3 fails if either "Iocally
compact" is replaced by "complete." or separability is not assumed. We
close with a most unfortunate fact of life: even for X = 10. II. if dim( n > I
and T: X ..~ CL(Y) is an U.S.c. compact valued multifunction that is the ()­
limit of a sequence of continuous functions, we cannot conclude that r has
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convex values. (If dim( Y) = 1 we can draw this conclusion. provided X is
locally connected III.)

EXAMPLE 3. We present a sequence 1.1:,1 of continuous functions on
10. II whose graphs converge in the Hausdorff metric to the graph of a
compact valued u.s.c. multifunction r: 10. II-~ CL(R!) that fails to have
convex val ues. For each 11 E Z + define /;,: 10. I I --+ R C by

, I )
'/;,(x) = (sin~. I ..

= (0. IIJrX).

I
if ~ ",. x I.

IIJr .

I
if 0 ~x < -~.

Ill'

L I I 0 () I TI 'If' /': It). I I .et T=1C\". ):-I~y~qU\( . .::): ~z~ i. len
CL(R C) is defined by

r(x)=T.

_\(. I) i
~ I sm ~-. I. (.

we have lim".! 61/',. rJ = O.

if x= O.

if 0 < x ~ I.

4. Two ApPLICATIONS OF THEOREM I

Let 1'.1 be a nonempty closed convex subset of a finite dimensional
subspace of a normed linear spaee X. For each x in X the set P,,(x) defined
by

P1/(X) = 1.1': .I' EM and Ix - v = inf Ilx - m I
me\!

is a nonempty compact convex subset of 1'.1. Moreover. the assignment
x --+ p\/(x). called the metric projection of X onto 1'.1 17]. is U.S.c. Thus.
Theorem I says that the restriction of this multifunction to any perfect subset
of X admits for each c > 0 a continuous e-approximate selection. In
particular. if S is a closed star-shaped set in the space whose convex kernel
lies in some finite dimensional subspace. then the metric projection of S onto
its kernel can be approximated by continuous functions in the Hausdorff
metric.

For an application of the general version of Theorem I. let X be a
separable Hilbert space and let C be a closed convex subset of X. For each x
in C the normal cone to C at x 116] is defined by

NcC,) = jy:yEX and for each wE Cy· (w--x)~OI.
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The normal cone to C at x is a closed convex set closed under addiuon and
multiplication by nonnegative scalars: evidently. the nonzero vectors in
N«x) determine the closed support hyperplanes to C at \ Although
x' N«(x) (as a multifunction on C) has a dosed graph. it is not in general
u.s.c. However. if X is finite dimensional. it is not hard to show using thl'
compactness of the unit ball that the normal cone multifunction is actua!h
u.s.c. Hence. the general version of Theorem I ensures for each positive r the
existence of an u.s.c. convex valued multifunction that admits a Baire "i,s,
one dense selection which i: approximates " ·V, (.\) dll (,'
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