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i, INTRODUCTION

Let {X.d,> and (Y, d,> be metric spaces. and CL(Y¥) denote the closed
nonempty subsets of Y. 8\ vmudtifunction from X to ¥ we mean a function
I7X > CLAY). By a selection ffor 1 we mean a function /74 = ¥ such that
for each v. f{v) & I'{x) The systemalic study of continuous selections begins
with the papers of Michael (sec. eg.. 112170 w survey of the literawure on
measurable selections {(with respect o some o-algebra of subsets on V) has
been compiled by Wagner in {17] and [1§]

The term approximate selectiois means different things to different people.
Relative to the work of Michael {121 Deutseh and Keaderov 171 and Olech
{141 an approximate selection for /iy a function /0 ¥ -V such that ar euch
aoan XL flar s close to some pomnt of Flvy We are interested in i orather
different notion studied by Ceilina |4 6] and Reich (13, where an approx
wnate selection ffor £7is one such that the graphs of fand /7 are “close,
where close is defined in a strong or weak sense, Explicitly. # O o usetin 2
metric space. let § | C denote the union of all npen ¢-balls whose centers run
aver (. Metrize & x ¥ using the mewic ¢ defined by plix. v {vo. o0 o
maxid, (v, v, da{ . ran Kentifving 03
their graphs. we say / weakly < approximases $30 8,10 o 71 in addition.
we have S 1] 77 then we say that / strongly s-approximates {

The results of Cellina and Reich are restricted 1o a particular ciass of
multifunctions. We call 72X > Y upper semicontinuons {u.s :J} at vin Vi
for cach ¢ » 0 there exists A = O such that 718, jxiy 8, rlh {A stronger
mqmrcmem would be that gnen any neighborhood ¥ (41 () ’hmc AIFTIN

= O such that (S, [x ]y« V. In the literature this pr{)pert} is usually called
upper semicontinuity. whereas ours is called Hausdorff upper semicontinuity
181y Let ¥ be a normed linear space. Basically. Reich and Cellina have
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APPROXIMATE SELECTIONS FOR MULTIFUNCTIONS 173

asked: When does there exist either a strong or weak ¢-approximate selection
for an u.s.c. convex valued multifunction /2 X - CL(Y)? The existence of
continuous strong e-approximate selections for such multifunctions is also
considered in the present paper. and we obtain a much more inclusive result
than the main theorem of [5|. We also ask a different question: If a
continuous strong ¢-approximate selection for [ does not exist, can we still
strongly g-approximate / by relatively nice functions? In the sequel the term
g-approximate selection shall mean a strong g-approximate selection in the
above sense.

Before proceeding we set forth some additional notation and terminology.
Let X and Y be metric spaces and let f:.X— Y be arbitrary. Denote the
closure of fas a subset of X X Y by f For each x in X the limit set L(/. x)
of fat xis {1:(x. y') € 1. By the sequential characterization of the closure
of a set in a metric space

L{f.x)={y:iaix, = x for which | f(x,)t - 1.

Using the trivial sequence x, = x, X, = x.... we see that f(x) € L(/, x). If /is
continuous at x, then L{f x)=!{f(x)}. but not conversely. The class of
functions f for which L(f. x) = {f(x)} for all x is simply those functions with
closed graph; these are the subject of a recent monograph of Hamlett and
Herrington {10]. The multifunction /7,: X — CL(Y) defined by /' {x) = L(/. x)
will be called the limir set multifunction induced by f If I X — CL(}) and
J =T, for some f. we call / a dense selection for I [2|. If f: X -+ ¥ we denote
the set of points of discontinuity of /by D( /). The function f'is said to be of
Baire class one if the inverse image of each open subset of } is an F subset
of X. Since each open subset of X is an F set. the Baire class one functions
include the continuous ones. For a thorough study of this class of functions.
the reader should consult {11]| (where these functions are called B-
measurable of class one). If /: X - R. the support of f. denoted by supp(/ ).
is the closure of the set {x: f(x) = 0.

The closure, set of limit points, and interior of a set C in a metric space
will be denoted by C. €. and int C. respectively. If K is another set in the
metric space and there exists ¢ >0 for which both S {C|2>K and
S, K| > C. then the Hausdorff distance § between C and K is given by

S|C. K] =1infle: S |C|>Kand S, |K|>C

Further information on this notion of distance can be found in Berge |3 1.
Kuratowski |11], and Nadler [13].

Once again let Y be a normed linear space. Even when X and Y are very
nice we cannot e-approximate each u.s.c. convex valued multifunction

(40292 &
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I X - CL(Y) by continuous functions. For example, /7 {0. 1]~ CL(R)
defined by

admits no such approximations. However. for each ¢ > 0. I as described
above can be s-approximated by a discontinuous function. Ignoring Borel
classification issues for the moment. there are certain obvious necessary
conditions that a convex valued w.s.c. multifunction 7 X — CL(Y) must meet
to admit some g-approximate selection. Fix x in X, By Zorn's lemma there is
a subset W of I'{x) such that for each v, and v, in W. | v v, |2 2¢ and
Flxya S, WL Now if Jvy x Fly) is o be a subset of S}/ for some
S/ X s Y.t follows that the cardinality of § x| must be at least that of i,
In particular. I7 must map isolated points to singletons, lmit points that are
not condensation points to separable sets. and so forth. In order 1o state
“nontechnical™ results valid for multifunctions defined on an arbitrary metric
space X. we choose to require that the values of /" be separable subsets of .
Thus, our cardinality conditions reduce to the single condition: /” maps
isolated points to singletons.

We will show that if X is a metric space. ¥ is a normed linear space. and
I X -+ CL{YY s an ws.c. multifunction mapping isolated points to singletons
such that for each x. /{y) is a separable convex set. then [ can be «
approximated by a Baire class one function whose limit set multifunction s
both u.s.c. and convex valued. Put differently, the convex wvalued us.c.
multifunctions that admit Baire class one dense selections are dense in the
separable convex valued uws.c. multifunctions. equipped with the Hausdorft
metric topology as applied o their graphs. Moreover. if /7 has totally
bounded values. then for cach « » 0 there exisis a continuous /2 X » Vsuch
that 8|/ 7] < oo I Y= R" we will show that for cach ¢ > 0 there exists a
Baire class one #-approximate selection for /7 with a closed graph.

2. PRELIMINARY LEMMAS

A prime use of locally finite covers and partitions of unity subordinated to
these covers |[9.p. 170} is to piece together continuous functions defined
locally to obtain a globally continuous function with prescribed properties.
Specifically, let {U;:i€ I} be such a cover of X, let ip.(-): i€ [ be a
partition of unity subordinated to the cover. and for each { let f,: U, Y
(where Y is a normed linear space) be continuous. For each / we understand
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the symbol p, f; to represent a function on X (rather than on just U,) by
requiring that p, f;(x} be zero off U,;. Then /@ X — Y defined by

is well defined and continuous. Our first two lemmas show that if we piece
together discontinuous functions defined locally, then certain common
qualitative aspects of their limit set structure are often preserved.

Lemva 1. Let X be a metric space and let Y be a normed linear space.
Let Q be a family of closed subsets of Y closed under translations and maps
of the form y » ay (a = 0). Let {U;:1€ I} be a locally finite open cover of X.
and let {p(-): 1€ 1} be a partition of unity subordinated to the cover.
Suppose for each index i. f;: U, — Y has the following properties:

(1y Foreach xin U, L(f,.x)C 0.
(2) For each x in X. at most one [, is discontinuous ai x.
(3} For each x in U,, px) =0 implies f; is continuous at x.

Suppose [ =N p, fi. Then for each x in X we have L(f.x)€ Q.

Proof.  Since locally there exist indices i,,i,.....i, such that [ =
M p,'/f,-’ and for each open set V the limit sets of /| V' agree with the limit
sets of / at each point of V. it suffices to show that for each 7 and & in [ the
function g = p,f; + p, f; has limit sets in £2. We first show this to be true
for p; ;. We consider the possible locations of a variable point x on X. If
x & supp( p;). then p, f; is zero in a neighborhood of x, whence L(p, [, x)is
a singleton, and therefore in Q. If p(x)# 0, then x€ U, and L{(p,/ . x)=
pAx) L(f;.x). a homothetic image of L(/f;.x). Here. too. L{p,f;. x) is in £2.
Finally. if x€supp(p;) and pix)=0. then by condition (3)
L(p,f;-x)=10}. We now show L(g.x)€ Q at each x. This is clearly true if
g 1s continuous at x. Otherwise. w.lLo.g.. we may assume p, [, is discon

tinuous at x. Then x € U, and f; is discontinuous at x. By (2). /, and
therefore p, f, are continuous at x. It now follows that L(g, x)=L(p, f;.x) +
P fi(x). a set which is 2gain in £2 by the first part of the proof.

There are many possibilities for the family £2 of Lemma 1: the singletons.
the convex sets, the star-shaped sets, the bounded sets. the finite sets. the
flats. etc. Of course, we will be interested in the first two configurations just
listed. To appreciate the need for conditions (2) and (3) in the statement of
Lemma 1. we present two simple constructions.
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Exampre 1. Let f: R — R be defined by
. i .
Jexy=—. i x w0
X

=} x o= ),

Then f has singleton limit sets, i.e.. its graph is closed. However, it p{x]
then L{pf.0)=10, 1}, a nonconvex set. If 7 R - R is defined by A{x}=
= f{x) if x# 0 and A(0)= 1. then A also has singleton limit sets whereas
L{f+h.0)=10.1L

Lemma 2. Let X be a metric space and ler Y be a normed linear spuee.
Let {U;:i€ 1t be a locally finite open cover of X. and let | p,(-):i €1} be
partition of unify subordinated o the cover. Suppose for cach (€ 1.
12U, Y has the following properties:

{1y The limit set mulfunction I', for [ is us.c.on U

{2y For each pair of distinct indices i and k. whenever x € D{j . then
X & suppé p, 1.

Fhen the limit set multifunction for { =3 p f, s us.c.on &

Proof.  As in the proof of Lemma 1 it suffices to show that for each : and
k the limit set multifunction for g = p, 7, + p, f, 15 us.c. First. we show that
the fimit set multifunction for p,f; is wsc. If p,f. is continuous at v, we
obviously have upper semicontinuity at x. Otherwise. by condition (2) and
the definition of partition of unity. the multifunction agrees locally with 7,
and must be also us.c. by (1). To show the limit set multifunction for g is
ws.c., fix v in X and let ¢ > 0. W.log we mav assume that p,/, is
continuous at x. By the first part of the proof there exists 4 > 0 such that
whenever d(x.z)<A. then L(p, fi.zv< S, [L(p,fi.x} and | p, fil2)
oSdx < e/2. From the above inclusion. whenever d(z.xi< 4. then
p f2)YE S, L 1L(p, fi+ x)], and it follows that

g(z)E Sé:ll"’(pl/l“‘)l + S;;:ipi\./,‘k(-\')}
< S!‘L(pl’{;'v) + pl‘/;‘\('\‘)l = S( tl‘(g* '\l”'

This implies that L{g. z) < S, |L{ g, x}| whenever d{z. x) < 4.
Although a somewhat weaker condition may be substituted for condition

(2) of Lemma 2, conditions (2) and (3) of Lemma | do not suffice.

ExampLE 2. Let Y =/,, the Hilbert space of square summable real
sequences, with the usual norm. Let C be the following closed convex subset
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of ¥:C={{a,;}: for each i€ Z". ¢, <i}. Define I" R - CL(Y) to be the
constant multifunction 7{x)= C. By Theorem 5 of |2] /" has a dense (Baire
class two) selection f i.e.. for each x in R. L(f. x)= C. It is easy to check
that for each « > 1 and each ¢ > O. the set §,{C] fails to contain «C. Hence
if pr R - (0,1) is an arbitrary strictly increasing function, it follows that
x - L(pfix)= p(x)C fails to be (right) u.s.c. at any point of R. Hence,
although p(x) is positive at each point of discontinuity of /, pf fails to have
an ws.c. limit multifunction,

QOur next two lemmas involve the local definition of functions.
LemMa 3. Let X be a metric space and let Y be a normed linear space.
Let x, € X' and let K be a closed ball with center x,. I V 2 K is open and

C Y is a separable closed convex set. then for each &> 0 there exisis
eV s C osuch that S|h(K). C} < ¢ and

{1y Dihy=ix,..
(2)  The limit set multifunction for h is w.s.c. and convex valued.

11 C is totally bounded. then h can be chosen continuous.

Proaf.  Suppose first that C is totally bounded. Choose {v,. 1.0 37,0 11
C such that S [1py. vaee b 2 CoLet (X, X5 x,} < K be arbitrary, By
the Dugundji extension theorem 19, p. 188] there exists a continuous
B Cosuch that for /= Lo 2e..n Alv;y = v, Clearly, o[MK). Cl e IT C

is not totally bounded. let {1,: j€ Z " | be a countable dense subset of €. Let
v, be a sequence in K convergent o x,. and let {§ |y [:j€EZ ¢ be
pairwise disjoint open balls none of which contains x,, For each A€ 2" et
E,=ip:p€EZ and p=2" 'q. where 2 and q are relatively prime}. For
vach j& Z° define A(x;) to be r,, where & is the unique integer for which
JOE, Now extend A to 17 as follows:

XY=, b } i _4.;.” dlx. x| i) — v i dixx)) < A
=7,. otherwise,

Notice that for each x in ¥, A(x) is a convex combination of v, and v, for
some A > 1. Thus. A(V) < C. Since lim; ., 4;==0 and lim,; ,, x;= «,. it is
evident that x, is the only point of discontinuity of /. By the construction for
follows that L{A, x,)= C. The upper semicontinuity of x— L(h, x) on } is
obvious, as is d|A(K). C|=0.

Lemma 4. Let X be u metric space and let R" be n-dimensional
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Euclidean space. Let x, € X' and let K be a closed ball with center x,. If
Vo K is open and C < R" is a closed convex sel. then there exists h: V- C
with a closed graph such that 6| h(K). C] < «.

Progf. W.lo.g. we can assume that 0 ¢ C. If C is bounded. then € 15
totally bounded. and we are done by Lemma 3. Otherwise. by Theorem 8.4
of |16] there is a nonzero vector p, in C such that for each v in C, v + 1, 15
again in C (such a vector is called a direction of recession for ). Let
{y;:JEZ | be a countable subset of C such that C S |1y € Z 1]
and whenever & % J, [ ¥, — ;|| > ¢. Since this set is closed and discrete. for
each n € Z° only finitely many elements can lie in S, 0] Let v and
S lxljez bf: defined as in the proof of Lemma ? For each j& 7
define h jx:0 <_ dix. x,) < 4;1 > C by

P
l[.“ T e - -»[.‘___A,
A= G T i

Notice that as x approaches either x; or the boundary of S |x . [/4{x)
approaches infinity. Finally, define #: 1V — R" by

hx)= v;. if for some j. x = x,,
= hix) if for some 0 < d{x.x;) <2
= V4o otherwise.

By the above remarks concerning each #,, the closedness of the graph of /& is
only at issue at x = x,. However. since inf{||A,(x)[: O <d(x.x;) <A1 > jhy, |
and lim L |(x))| = co. whenever |z} - x,. then either (h{z)] - v, or
1Az, fai s to converge. Thus, L{h v} = { v, = {hlx,}h and the graph of &
1S closed Clearly. }’I(V)(— C.and since A{lx;: jC€ Z )= y,: jE€EZ | we
have 6|A(K). C| <

We need one more lemma before our main results. It is a key one.

LemMMA 5. Let X be a metric space with (X'} nonempty. Let V' be an
open set containing (X'Y'. Then there exists a pair of open sets G, and G,
such that G, NG, =@, G,V G, =X.and (XY <G, c V.

Progf. Since (X')’ is closed and X — V is closed, by normality there exist
disjoint open sets U and U* such that X — V' < U and U* o (X')'. For each
x €X' — V there exists £, € (0, 1} such that §, {x[ contains no other limit
point of X and §, (x} < U For each such x 1et /t = 5&,. We now show that
the open set

H=J{S, |xj:x€X —V}
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is also closed. Suppose {z,} is a sequence in H convergent to some point z.
For each n choose x,€X'—VF such that dix,.z,)<4,. Now
him, ., d(x,.z)# 0, or otherwise z € (X"). However. for each n, z, € U,
whence z € X — U*. This contradicts {(X') < U*. By passing to a subse-
quence we can assume lim, . d(x,.z) exists and is positiver We then have

0 < lim d(.\‘”.f_’): lim d(.’f”.:"}

n is

<liminf 4,
"oy ’

<liminfe .

H o-r

In particular, there exists N & Z~ such that d(x,,z) <&, . Thus. unless {z,}
is constant eventually. S, |x,] contains a limit point of .X in contradiction to
o 1Y

the choice of ¢, . Thus {z,} must be constant eventually, and z € H follows.

Finally. let G, =V —~H and let G,=X—G,. From the preceding
discussion, G, is open. The set G, consists of the open set H plus the isolated
points of X belonging to neither G, nor H. This latter set is clearly open: so.
G, is open.

3, Tue MAIN RESULTS

The vehicle we use to pass from functions |f;: 7 &€ I} defined on elements
of some locally finite open cover {U;:i € ]} of X that are each close locally
to a convex valued us.c. multifunction /7 to obtain an g-approximate
selection f for I’ defined globally is a slight modification of an argument
buried in the proof of the main theorem of |5]. We single it out as a lemma.

CELLINA'S LEMMA. Let X be a metric space and let 'Y be a normed
ionear space. Let I': X - CL{Y) be u.s.c. and convex valued. Suppose there
exists a locally finite open cover (U,: 1€ 1} of X, and for each 1 € I a closed
set K;. a point b,, a number A,, and a function f;: U;—~ I'(b,) such that

(1) K,cU,cS, bl
(2) A <eand IS, |b,]) =S, (b))
{3) Whenever i # k. then K, MU, = @.
{4} é{.}(‘z(\Kz)s F(?);H < &/2

Suppose {p{-Y: i€l is a partition of unity subordinated to the cover
VUi €1}, Then the function =3 p, f; satisfies 0} /. I'] < ¢.

Cd
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In the proof of the main theorem of [3]. X is a metric locally convex
space, each set K, is convex. each f; is continuous. and /" is assumed to have
totally bounded values. However, none of these assumptions are used to
prove the above lemma (the details of which are left to the reader). a fact we
shall now exploit in conjunction with the results of the last section.

]

THEOREM |. Let X be a metric space and fet 'Y be a normed lincar
space. Let X - CL(Y) be an us.c. multifunction with the following
properties:

(1Y 1" maps isolated points of X 1o singletons.

(21 For each x in X, {{x) 5 a separable conrex set

Then there cxisis a Baire class one function X Y swhose [limit sei
multifunction is ws.c. and convex valued such that 3| J 1 s« If the values
of I are each totally bounded, then f can be chosen continuous.

Progf.  We first consider metric spaces X for which (V73w empty. IH A
is empty. then by (1} 7" itself is a continuous singlc valued function, and
there is nothing to prove, Otherwise. for each v in Y7 choose A, = 0 such

that (it §., [vi contains no nthez‘ Hmi point of 1. ii%i : oand iy
dx.zy e othen Fioyo S, I Ser B S, v v V0 Sinee zadd
point of 7 belongs to a uniqun bd 5oixl ’hc open cover 1Y, iy

of M s docally finite. The only ;zmt of anity op Lk v A
subordinated to the cover is the one for which Céi(,h function 2 is simply the
characteristic function of S, [x]. For cach xin X7 et K+ & diz,x) s o
By Lemma 3 ’hcrv CXISLS Soos ] iy ~uch that

3], /' R Tc e n/2, () DUy = vy ,md (tiry the Hmit <o mulufuncuos
for /. is convex valued and 5.0 If the values of {7 are totaliv bounded. then

wl(h such uratmn can be chosen continueus. Lot 700 Y be given &y
Fooe N g o Nute that for each ze HLfin o Sz where oss the umigue
limit p point oi X for which diz. vy < 2 . By Cellina’s lemmma o 7/, D H < -

The hypotheses of Lemmas ! and 2 are aiso satisfied: so. the limit sc
multifunction for ,/', is both u.s.c. and convex valued. Also. since D{/,) is o
closed discrete set. /) is of Baire class one. and if each /' is continuous. 50 1=
5
The pomts of X not in H are isolated: so. for each such point v the sa
fix} is a singleton. Define /50X - H » ¥V by fi{x) = I'(x) Finallv, define
I X 2 Y by

Sy = fi{xn i oxe
= fy{x) i xe X~ H
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Since D{f )= D(f}), the function f is of Baire class one. If /| is continuous.
then since H and X — H form a separation of X. the function f will be
continuous, too. For the same reason. the values of /| (resp. /) have no
bearing on the limit sets of f, (resp. f,). whence the limit set multifunction
for fis both u.s.c. and convex valued. Clearly, d|/f, I'] < ¢

We now consider X for which (X")" is nonempty. For notational
simplicity we write F for (X'}, For each x in F choose 4, < ¢ such that if
e X and d(z.x) <A, then M{z)c S L[N Let W=U IS, ,|x[:xEF)
and let {V,:i€l,} be a locally f“mte open refinement o the cover

18y s|xlix € F} of W. Define I < I as follows:

J oo }‘1' i & 1,, and ;"’if\;}r?‘@?.

Set V= (Vi€ I{: the collection {},:i€ [} is a locally finite open cover
of V. By Lemma 5 there are open sets G and G, such that () G, U G, = X,
iy G, MG.=@, and (iil) Fa G, < ", For each i €] set V=G ™.
Notice that for each index 7 the open set 7 contains infinitely many limit
po'nt% of X. Hence. reasoning as in Proposition | n‘ [5]. there is an injection
-+ «, defined on 7 such that for each / both @, € 17 and «, is a limit point of
\ WL‘ now proceed as in the proof of the main theorcm of 153). There is a
collection of pairwise disjoint closed balls {K,:/€ 7! such that for each
index 7, o, € it K, < V¥, For each i the set

l_"‘, = I’, t) [\,

jel.
[

is open and contains K,. Furthermore. [U,:i& /i is a locally finite
refinement of the cover {}FF:i€ I} of (. Since U/, { € [} is a refinement of
IS, »lx]ix € Fi. for each i we can find b, in F such that for each = in U,
d(z, h y< 4k, . Again by Lemma3 for nagh index 7 there is f;2 U, -+ (b))
such that (1) ()ff(K} Tb) < e/2, (i) D(J) = ja;). and (iii) the 1mit set

multifunction for /f; is both convex valued and u.s.c. If the values of [ are
totally  bounded. then each such /, can be chosen continuous. Let
ipl-)i€ il be a partition of unity subordinated to {U;:7€ 7). Since
whenever { # k we have K, N U, = @. Lemmas | and 2 and Cellina’s lemma
all apply: the function g,:G,- Y given by g, =) p,f satisfies
olg,. 1G] <es and the limit set multifunction for g, is both us.c. and
convex valued. Since D(g,)={a,:i€ [}, a closed discrete set. g, is of Baire
class one. As usual, if for each index 7 the function /; is continuous, then g, is
continuous.

Finally, by the first part of the proof there exists g,: &, Y such that (i)
8l g ' G| <e. (il) D(g,y) is a closed discrete set, and (iii) the limit set
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multifunction for g, is uss.c. and convex valued. If [ has totally bounded
values, then g, can be chosen continuous. The function f: X - V defined by

flxy= g xn if veo,.

is the desired function.

TaEOREM 2. Let X be a metric space and fet "X -~ CL(R") he «
convex valued u.s.c. multifunction mapping isolated points 1o singletons.
Then there exisis a function [f: X -»R" with a closed graph such rthat
ST e

Proogf. Recall that the functions with closed graphs are precisely those
with singleton limit sets. Lemma | thus applies to this class of functions.
Hence, the proof of Theorem 1 goes through intact. except that we invoke
Lemma 4 in lieu of Lemma 3.

It should be noticed that in the statement of Theorem 2 it 15 not claimed
that the limit set multifunction for fis w.s.c., nor is it claimed that fis of
Baire class one. Indeed. the upper semicontinuity of the hmit set
multifunction for a function with closed graph implies continuity of the
function. On the other hand, by virtue of our next result, the statement that /
is of Baire class one is redundant.

THEOREM 3. Let X be a metric space and lei Y be « separable locally
compact metric space. I [ X - Y has a closed graph. then [ is of Baire class
one.

Proof.  The proof of Theorem 1.6.2. of |10] shows that D{/) is a closed
set. Let G be an open subset of Y. Since D(/f) is closed. / "(G)M
[X — D(f)] is an open subset of X. Since open sets in a metric space are F,
sets. it remains to show that f "(G)MD(f) is an F_, set. By our
assumptions for Y. G may be represented as a countable union of compact
sets G =J; , K,. We claim that for each index i the set / "(K,) "\ D(/) is
a closed subset of X. Suppose {x,} is a sequence in / YK D(/)
convergent to some point x. Since D{f) is closed. x € D(f). Since K, is
compact. {f(x,)} has a subsequence convergent to some point  in K,. By
definition y € L(f, x), and since L{/. x)= | f{x)}. we have v £/ Y(K,).

We ieave it to the reader to show that Theorem 3 fails if either “locally
compact”™ is replaced by “complete,” or separability is not assumed. We
close with a most unfortunate fact of life: even for X = [0, 1] if dim(¥) > |
and 71 X - CL(Y) is an u.s.c. compact valued multifunction that is the J-
limit of a sequence of continuous functions, we cannot conclude that 7" has
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convex values. (If dim(Y)=1 we can draw this conclusion, provided X is
locally connected |1].)

EXAMPLE 3. We present a sequence {f,} of continuous functions on
|0. 1] whose graphs converge in the Hausdorff metric to the graph of a
compact valued u.s.c. multifunction /% [0. 1] > CL(R?) that fails to have
convex values. For each n € Z* define /,: [0. 1| > R” by

!

ni

S = (sin L 1 ) if

RY

< v <

1
= (0. nmx), it 0y < —.
nn

Let T={(r1y—1<r<lUN0.2):0Lz< It Then if {2]0.1] »

CL(R") is defined by

I'x)y=T. it x =0,
RN { . »
- (smv-.l),. i 0yl
! X
we have lim, ., 3| f,, "] =0.

4. Two APPLICATIONS OF THEOREM 1

Let A be a nonempty closed convex subset of a finite dimensional
subspace of a normed linear space X. For each x in X the set P, (x) defined
by

Py(x)={rreMand |[x— v]|= inf j|x—m]}
me M

is a nonempty compact convex subset of M. Moreover, the assignment
X Py, (x). called the metric projection of X onto M |7|. is us.c. Thus.
Theorem 1 says that the restriction of this multifunction to any perfect subset
of X admits for each ¢ >0 a continuous ¢-approximate selection. In
particular, if S is a closed star-shaped set in the space whose convex kernel
lies in some finite dimensional subspace, then the metric projection of S oato
its kernel can be approximated by continuous functions in the Hausdorff
metric.

For an application of the general version of Theorem 1. let X be a
separable Hilbert space and let C be a closed convex subset of X. For each x
in C the normal cone to C at x |16] is defined by

N{x)={yvy&€ X and for each w e C. v (w—x) 0.
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The normal cone to C at x is a closed convex set closed under addition and
multiplication by nonnegative scalars: evidently. the nonzero vectors in
No(x) determine the closed support hyperplanes to C at x. Although

X -

+ No{x) {as a multifunction on () has a closed graph. it 15 not in general

u.s.c. However, if X is finite dimensional, it is not hard to show using the
compactness of the unit ball that the normal cone multifunction is actualls

us

.c. Hence. the general version of Theorem | ensures for cach positive « the

existence of an u.s.c. convex valued multifuncuion that admits o Baire olass
one dense selection which s-approximates v A (v) on
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