Approximate Selections for Upper Semicontinuous Convex Valued Multifunctions

Gerald Beer
Deparment of Mathematics. Califomia State Universits. Los Angeles. Calfomia Yonz. ©.S.A.
Communicated br ored Shisha

Recened May 3. Iusa

1. Inirodergion

Let $\left\langle X, d_{1}\right.$, and $\left\langle Y, d_{2}\right.$ be metric spaces and $C L(Y)$ denote the closed nonempty subsets of Y. By a multifunction from X to Y we mean a function $I: X \rightarrow \mathrm{CL}(Y)$. By a selection f for I we mean a function $f ; f \rightarrow Y$ such that for each $x . f(x) \in I(x)$. The systomatic sudy of continuous selections begins with the papers of Michael (see e.g. $1 / 2 /$; in survey of the literature on measurable selections (with respect to some a algebra of subsets on th has been compled by Wagner in |17| and |18|.

The term approximate selection means different things to different people. Relative so the work of Michael | $12 \mid$. Deutseh and Kenderov | 7 , and Olech
 x in $X . f(x)$ is close to some point of $/(x)$. We are meteresed in at rather different notion studied by Cellina $\mid 4$ b| and Reich |15|, where an appox mate selection f for f ' is one sach that the graphs of f and I are "close. where close is defmed in a strong or weak sense. Explicitly, if C is a se in a metric space let $S,|C|$ denote the union of at npen i balls whose centers run over C. Metrize $X \times$, using the metric p defned by $p(x ; i)$ o (x, y)

 we have $S|f| \geqslant I$. then we say that f strongly a approximates f

The results of Cellina and Reich are restricted to a particular ciass of
 for each $2>0$ there exists $\lambda>0$ such that $I\left(S_{i}|x|\right)=S_{t}|/(x)|$ (A stronger requirement would be that given any neighborhood V of $f(x)$ there exists $\therefore \Rightarrow 0$ such that $\Gamma\left(S_{1}|x|\right)<V$. In the literature this property is usually called upper semicontinuity, whereas ours is called Hausdorff upper semicontinuity 181.) Let Y be a normed linear space. Basically, Reich and Cellma have
asked: When does there exist either a strong or weak ε-approximate selection for an u.s.c. convex valued multifunction $\Gamma: X \rightarrow \mathrm{CL}(Y)$? The existence of continuous strong ε-approximate selections for such multifunctions is also considered in the present paper, and we obtain a much more inclusive result than the main theorem of $|5|$. We also ask a different question: If a continuous strong ε-approximate selection for I does not exist, can we still strongly ε-approximate I by relatively nice functions? In the sequel the term ε-approximate selection shall mean a strong ε-approximate selection in the above sense.

Before proceeding we set forth some additional notation and terminology, Let X and Y be metric spaces and let $f: X \rightarrow Y$ be arbitrary. Denote the closure of f as a subset of $X \times Y$ by \bar{f}. For each x in X the limit set $L(f, x)$ of f at x is $\{y:(x, y) \in \bar{f}\}$. By the sequential characterization of the closure of a set in a metric space

$$
L(f, x)=\left\{1: \exists\left\{x_{n}\right\} \rightarrow x \text { for which }\left\{f\left(x_{n}\right)\right\} \rightarrow y\right.
$$

Using the trivial sequence $x_{1}=x, x_{2}=x, \ldots$, we see that $f(x) \in L(f, x)$. If f is continuous at x, then $L(f, x)=\{f(x)\}$. but not conversely. The class of functions f for which $L(f . x)=\{f(x)\}$ for all x is simply those functions with closed graph; these are the subject of a recent monograph of Hamlett and Herrington $|10|$. The multifunction $\Gamma_{:}: X \rightarrow \mathrm{CL}(Y)$ defined by $\Gamma_{,}(x)=L(f, x)$ will be called the limit set multifunction induced by f. If $I: X \rightarrow \mathrm{CL}(Y)$ and $I=\Gamma$, for some f, we call f a dense selection for $\Gamma|2|$. If $f: X \rightarrow Y$ we denote the set of points of discontinuity of f by $D(f)$. The function f is said to be of Baire class one if the inverse image of each open subset of Y is an F_{0}, subset of X. Since each open subset of X is an F_{v} set, the Baire class one functions include the continuous ones. For a thorough study of this class of functions. the reader should consult $\mid 11 \|$ (where these functions are called B measurable of class one). If $f: X \rightarrow R$. the support of f, denoted by supp (f). is the closure of the set $\{x: f(x) \neq 0\}$.

The closure, set of limit points, and interior of a set C in a metric space will be denoted by \bar{C}, C^{\prime}, and int C, respectively. If K is another set in the metric space and there exists $\varepsilon>0$ for which both $S|C| \supset K$ and $S_{\varepsilon}|K|>C$, then the Hausdorff distance δ between C and K is given by

$$
\delta|C, K|=\inf \left\{\varepsilon: S_{\varepsilon}|C| \supset K \text { and } S_{\varepsilon}|K| \supset C\right.
$$

Further information on this notion of distance can be found in Berge |3|. Kuratowski [11], and Nadler |13|.

Once again let Y be a normed linear space. Even when X and Y are very nice we cannot ε-approximate each u.s.c. convex valued multifunction
$I: X \rightarrow \mathrm{CL}(Y)$ by continuous functions. For example, $/:|0.1| \rightarrow \mathrm{CL}(\mathrm{R})$ defined by

$$
\begin{aligned}
\Gamma(x) & =R, & & \text { if } x=0 . \\
& =\{0\}, & & \text { otherwise } .
\end{aligned}
$$

admits no such approximations. However, for each $i>0 . l$ as described above can be es-approximated by a discontimuous function. Ignoring Borel classification issues for the moment. there are certain obvious necessary conditions that a convex valued us.c. multifunction $\Gamma: X \rightarrow \mathrm{CL}(Y)$ must meet to admit some a approximate selection. Fix x in X. By Zorn's lemma there is a subset W of $\Gamma(x)$ such that for each y_{1} and y_{2} in $W . y_{1} y_{2} \mid \geq 26$ and $\Gamma(x) \subset S_{2}|H|$. Now if $\left\{x, \times \Gamma(x)\right.$ is to be a subset of $S_{i}|f|$ for some $f: X \cdot Y$, it follows that the cardinality of $S_{2}|x|$ must be at least that of 41 , In particular. I must map isolated points to singletons. limit points that are not condensation points to separable sets, and so forth. In order to state "nontechnical" results valid for multifunctions defined on an arbitrary metric space X. we choose to require that the values of I be separable subsets of ξ. Thus, our cardinality conditions reduce to the single condition: I maps isolated points to singletons.

We will show that if X is a metric space. Y is a normed linear space and $I: X \rightarrow C L(Y)$ is an us.c. multifunction mapping isolated points to singletons such that for each $x . /(x)$ is a separable convex set, then I can be $:$ approximated by a Baire class one function whose limit set multifunction is both u.s.c. and convex valued. Put differently, the convex valued us.e. multifunctions that admit Bare class one dense selections are dense in the separable convex valued u.s.e. multifunctions, equipped with the Hausdorff metric topology as applied to their graphs. Moreover. if I has totally bounded values. then for each $:=0$ there exiss a continuous $f: X$, y suct that $\delta|f, \Gamma|<x$ If $\gamma=R^{\prime \prime}$. we will show that for each $s: 0$ there exists a Baire class one s-approximate selection for l with a closed graph.

2. Preliminary Lemmas

A prime use of locally finite covers and partitions of unity subordinated to these covers $|9 . p .170|$ is to picce together continuous functions defined locally to obtain a globally continuous function with prescribed properties. Specifically, let $\left\{U_{i}: i \in I\right\}$ be such a cover of X, let $\left\{p_{i}(\cdot): i \in I\right\}$ be a partition of unity subordinated to the cover, and for each i let $f_{i}: U_{i} \rightarrow Y$ (where Y is a normed linear space) be continuous. For each i we understand
the symbol $p_{i} f_{i}$ to represent a function on X (rather than on just. U_{i}) by requiring that $p_{i} f_{i}(x)$ be zero off U_{i}. Then $f: X \rightarrow Y$ defined by

$$
f(x)=\sum_{i=1}^{v} p_{i} f_{i}
$$

is well defined and continuous. Our first two lemmas show that if we piece together discontinuous functions defined locally, then certain common qualitative aspects of their limit set structure are often preserved.

Lemma 1. Let X be a metric space and let Y be a normed linear space. Let Ω be a family of closed subsets of γ closed under translations and maps of the form $y \rightarrow \alpha y(\alpha \geqslant 0)$. Let $\left\{U_{i}: i \in I\right\}$ be a locally finite open coter of X. and let $\left\{p_{i}(\cdot): i \in I\right\}$ be a partition of unity subordinated to the coter. Suppose for each index i. $f_{i}: U_{i} \rightarrow Y$ has the following properties:
(1) For each x in $U_{i}, L\left(f_{i}, x\right) \in \Omega$.
(2) For each x in X. at most one f_{i} is discontimuous at x.
(3) For each x in $U_{i}, p_{i}(x)=0$ implies f_{i} is continuous at x.

Suppose $j=$ 【 $p_{i} f_{i}$. Then for each x in X we have $L(f, x) \in \Omega$.

Proof. Since locally there exist indices $i_{1}, i_{2}, \ldots . i_{n}$ such that $f=$ $\Sigma_{i}^{\prime \prime}, p_{i} f_{i,}$ and for each open set V the limit sets of $f \mid V$ agree with the limit sets of f at each point of V. it suffices to show that for each i and k in I the function $g=p_{i} f_{i}+p_{k} f_{k}$ has limit sets in Ω. We first show this to be true for $p_{i} f_{i}$. We consider the possible locations of a variable point x on X. If $x \notin \operatorname{supp}\left(p_{i}\right)$, then $p_{i} f_{i}$ is zero in a neighborhood of x, whence $L\left(p_{i}, f_{i}, x\right)$ is a singleton, and therefore in Ω. If $p_{i}(x) \neq 0$, then $x \in U_{i}$ and $L\left(p_{i}, f, x\right)=$ $p_{i}(x) L\left(f_{i}, x\right)$, a homothetic image of $L\left(f_{i}, x\right)$. Here, too, $L\left(p_{i} f_{i}, x\right)$ is in Ω. Finally. if $x \in \operatorname{supp}\left(p_{i}\right)$ and $p_{i}(x)=0$, then by condition (3) $L\left(p_{i}, f_{i}, x\right)=\{0\}$. We now show $L(g, x) \in \Omega$ at each x. This is clearly true if g is continuous at x. Otherwise, w.l.o.g. we may assume $p_{i} f_{i}$ is discon tinuous at x. Then $x \in U_{i}$ and f_{i} is discontinuous at x. By (2). f_{i} and therefore $p_{k} f_{k}$ are continuous at x. It now follows that $L(g, x)=L\left(p_{i}, f_{i}, x\right)+$ $p_{k} f_{k}(x)$. a set which is again in Ω by the first part of the proof.

There are many possibilities for the family Ω of Lemma 1 : the singletons. the convex sets, the star-shaped sets, the bounded sets, the finite sets, the Hats. etc. Of course, we will be interested in the first two configurations just listed. To appreciate the need for conditions (2) and (3) in the statement of Lemma 1. we present two simple constructions.

Example 1. Let $f: R \rightarrow R$ be defined by

$$
\begin{aligned}
f(x) & =\frac{1}{x} \cdot & \text { if } x \neq 0 . \\
& =0 . & x=0 .
\end{aligned}
$$

Then f has singleton limit sets, i.e., its graph is closed. However, if $p(x) \cdots$. then $L(p f, 0)=\{0,1\}$, a nonconvex set. If $h: R \rightarrow R$ is defined by $h(x)=$ $-f(x)$ if $x \neq 0$ and $h(0)=1$. then h also has singleton limit sets whereas $L(f+h .0)=\{0.1\}$.

Lemma 2. Let X be a metric space and let Y be a nomed imear space. Let $\left\{U_{i}: i \in I\right\}$ be a locally finite open cover of X. and let $\left.p_{i}(\cdot): i \in I\right\}$ be a partition of unity subordinated to the coter. Suppose for each $i \in i$. $f_{i}: U_{i} \rightarrow Y$ has the following properties:
(1) The limit set mulfunction I_{i} for f_{i} is u.s.c. on U_{i},
(2) For each pair of distinct indices i and k, whenever $\rightarrow \in D(J$, , then $x \notin \operatorname{supp}\left(p_{h}\right)$.
Then the limit set multifunction for $f=\Sigma p_{i} f$ is u.s.c. on I
Proof. As in the proof of Lemma 1 it suffices to show that for each and k the limit set multifunction for $g=p_{i} f_{i}+p_{k} f_{k}$ is u.s.c. First. we show that the limit set multifunction for $p_{i} f_{i}$ is use. If $p_{i} f_{i}$ is continuous at s, we obviously have upper semicontinuity at x. Otherwise, by condition (2) and the definition of partition of unity, the multifunction agrees locally with I, and must be also u.s.e. by (1). To show the limit set multifunction for g is u.s.c., fix x in X and let $\varepsilon>0$. W.l.o.g. we may assume that $p_{k} f_{k}$ is continuous at x. By the first part of the proof there exists $\lambda>0$ such that whenever $d(x, z)<\lambda$. then $L\left(p_{i} f_{i}, z\right) \subset S_{b, 2}\left|L\left(p_{i} f_{i}, x\right)\right|$ and $\mid p_{k} f_{k}(z)$ $\left.p_{k} f_{k}(x)\right)<\delta / 2$. From the above inclusion. whenever $d(z, x)<\lambda$. then $p_{i} f_{i}(z) \in S_{i, 2}\left|L\left(p_{i} f_{i}, x\right)\right|$, and it follows that

$$
\begin{aligned}
g(z) & \in S_{z 2}\left|L\left(p_{i} f_{i}, x\right)\right|+S_{k 2}\left|p_{k} f_{k}(x)\right| \\
& \subset S_{k}\left|L\left(p_{i} f_{i}, x\right)+p_{h} f_{k}(x)\right|=S_{i}|L(g, x)|
\end{aligned}
$$

This implies that $L(g, z) \subset S_{z}|L(g, x)|$ whenever $d(z, x)<\lambda$
Although a somewhat weaker condition may be substituted for condition (2) of Lemma 2. conditions (2) and (3) of Lemma I do not suffice.

Example 2. Let $Y=l_{2}$, the Hilbert space of square summable real sequences, with the usual norm. Let C be the following closed convex subsel
of $Y: C=\left\{\left\{\alpha_{i}\right\}\right.$: for each $\left.i \in Z^{+}, a_{i} \leqslant i\right\}$. Define $I: R \rightarrow C L(Y)$ to be the constant multifunction $\Gamma(x) \equiv C$. By Theorem 5 of $|2| \Gamma$ has a dense (Baire class two) selection f, i.e.. for each x in $R, L(f, x)=C$. It is easy to check that for each $\alpha>1$ and each $\varepsilon>0$. the set $S_{\varepsilon}|C|$ fails to contain αC. Hence if $p: R \rightarrow(0,1)$ is an arbitrary strictly increasing function, it follows that $x \rightarrow L(p f, x)=p(x) C$ fails to be (right) u.s.c. at any point of R. Hence. although $p(x)$ is positive at each point of discontinuity of f, $p f$ fails to have an u.s.c. limit multifunction.

Our next two lemmas involve the local definition of functions.
Lemma 3. Let X be a metric space and let Y be a normed linear space. Let $x_{0} \in X^{\prime}$ and let K be a closed ball with center x_{0}. If $V=K$ is open and $C \backsim Y$ is a separable closed convex set. then for each $:>0$ there exists $h: 1, C$ such that $\delta|h(K) . C| \leqslant!$ and
(1) $D(h)=\left\{x_{0}\right\}^{\prime}$
(2) The limit set multifunction for h is us.c. and convex valued.

If C is totally bounded, then h can be chosen continuous.
Proof. Suppose first that C is totally bounded. Choose $\left\{y_{1}, y_{2}, \ldots, y_{n}\right.$ in C such that $S_{1} \mid\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \supset C$. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in K$ be arbitrary. By the Dugundji extension theorem 19, p. $188 \mid$ there exists a continuous $h: 1 \rightarrow C$ such that for $j=1.2, \ldots, h, h\left(x_{j}\right)=y_{j}$. Clearly. $\delta|h(K), C| \leqslant n$ If C is not totally bounded. let $; y_{j}: j \in Z \quad$ be a countable dense subset of C. Let $\left\{x_{j}\right\}$ be a sequence in K convergent to x_{0}. and let $\left\{S_{i,}\left|x_{j}\right|: j \in Z\right.$ be pairwise disjoint open balls none of which contains x_{0}. For each $k \in Z$ ' let $E_{\mathrm{A}}=p: p \in Z$ ' and $p=2^{k}$ ' q. where 2 and q are relatively primes. For each $j \in Z$ define $h\left(x_{j}\right)$ to be y_{h}, where k is the unique integer for which j E E_{h}. Now extend h to I as follows:

$$
\begin{aligned}
h(x) & =r_{1}+\left|1-\frac{1}{\lambda_{i}} d\left(x, x_{i}\right)\right|\left(h\left(x_{i}\right)-y_{1}\right) . & & \text { if } d\left(x, x_{i}\right)<\dot{\lambda}_{i} . \\
& =y_{1} . & & \text { otherwise. }
\end{aligned}
$$

Notice that for each x in $V, h(x)$ is a convex combination of y, and y_{h} for some $k>1$. Thus. $h(V) \subset C$. Since $\lim _{j+5} \lambda_{j}=0$ and $\lim _{j}, x_{j}=x_{0}$, it is evident that x_{0} is the only point of discontinuity of h. By the construction for each $k \in Z$ the point y_{k} in is $L\left(h, x_{0}\right)$, and since $L\left(h, x_{0}\right) \subset \overline{h(V)} \subset C$, it follows that $L\left(h, x_{0}\right)=C$. The upper semicontinuity of $x \rightarrow L(h, x)$ on V is obvious, as is $\delta|h(K), C|=0$.

Lemma 4. Let X be a metric space and let R^{n} be n dimensional

Euclidean space. Let $x_{0} \in X^{\prime}$ and let K be a closed ball with center x_{0}. If $V \supset K$ is open and $C \subset R^{\prime \prime}$ is a closed convex set. then there exists $h: V \rightarrow C$ with a closed graph such that $\delta|h(K) . C| \leqslant a$.

Proof. W.l.o.g. we can assume that $0 \in C$. If C is bounded, then C is totally bounded. and we are done by Lemma 3. Otherwise. by Theorem 8.4 of $|16|$ there is a nonzero vector y_{0} in C such that for each y in $C, y+y_{0}$ is again in C (such a vector is called a direction of recession for C). Let $\left\{y_{j}: j \in Z^{-}\right.$, be a countable subset of C such that $C \subset S_{i} \mid\left\{y_{i} j \in Z:\right.$ and whenever $k \neq j,\left\|y_{k}-y_{j}\right\| \geqslant 6$. Since this set is closed and discrete. for each $n \in Z$ only finitely many elements can lie in $S_{n}|0|$. Let x_{i} and $\left\{S_{\ell}\left|x_{j}\right|: j \in Z ;\right.$ be defined as in the proof of Lemma 3 . For each $j \in Z$ define $h_{i}:\left\{x: 0<d\left(x, x_{j}\right)<\lambda_{i}\right\} \rightarrow C$ by

$$
h_{i}(x)=j y_{0}+\frac{y_{0}}{\left.d\left(x, x_{i}\right) \mid \lambda_{i}-d\left(x, x_{i}\right)\right]}
$$

Notice that as x approaches either x_{j} or the boundary of $S_{i}\left|x_{j}\right| \cdot\left|h_{i}(x)\right|$ approaches infinity. Finally, define $h: V \rightarrow R^{\prime \prime}$ by

$$
\begin{aligned}
h(x) & =y_{j} . & & \text { if for some } j, x=x_{j} \\
& =h_{j}(x) . & & \text { if for some } j, 0<d\left(x, x_{j}\right)<i_{;} . \\
& =y_{0} . & & \text { otherwise. }
\end{aligned}
$$

By the above remarks concerning each h_{j}, the closedness of the graph of h is only at issue at $x=x_{0}$. However. since inf $\left\{\left\|h_{j}(x)\right\|: 0<d\left(x_{,}, x_{j}\right)<\lambda_{j},>j \| x_{n}\right.$ and $\lim _{j} \ldots\left\|\left(x_{j}\right)\right\|=\infty$, whenever $\left\{z_{k}\right\} \rightarrow x_{11}$. then either $\left\{h\left(z_{k}\right)\right\}+y_{0}$ or $\left\{h\left(z_{k}\right)\right\}$ fails to converge. Thus, $\left.L\left(h, x_{v}\right)=\mid x_{n}\right\}=\left\{h\left(x_{0}\right)\right\}$, and the graph of h is closed. Clearly. $h(V) \subset C$. and since $h\left(x_{j} ; j \in Z \quad \mid\right)=y_{j}: j \in Z^{\prime}$, we have $\delta|h(K), C| \leqslant \varepsilon$.

We need one more lemma before our main results. It is a key one.

Lemma 5. Let X be a metric space with $\left(X^{\prime}\right)^{\prime}$ nonempty. Let V be an open set containing $\left(X^{\prime}\right)^{\prime}$. Then there exists a pair of open sets G_{1} and G_{2} such that $G_{1} \cap G_{2}=\varnothing, G_{1} \cup G_{2}=X$, and $\left(X^{\prime}\right)^{\prime} \subset G_{1} \subset V$.

Proof. Since $\left(X^{\prime}\right)^{\prime}$ is closed and $X-V$ is closed, by normality there exist disjoint open sets U and U^{*} such that $X-V \subset U$ and $U^{*} \supset\left(X^{\prime}\right)^{\prime}$. For each $x \in X^{\prime}-V$ there exists $\varepsilon_{x} \in(0,1)$ such that $S_{\mathrm{t}_{\mathrm{y}}}|x|$ contains no other limit point of X and $S_{\varepsilon_{x}}|x| \subset U$. For each such x let $\lambda_{x}=\frac{1}{2} \varepsilon_{x}$. We now show that the open set

$$
H=\bigcup\left\{S_{\lambda_{v}}|x|: x \in X^{\prime}-V\right\}
$$

is also closed. Suppose $\left\{z_{n}\right\}$ is a sequence in H convergent to some point z. For each n choose $x_{n} \in X^{\prime}-V$ such that $d\left(x_{n}, z_{n}\right)<\lambda_{x_{n}}$. Now $\lim _{n \rightarrow,} d\left(x_{n}, z\right) \neq 0$, or otherwise $z \in\left(X^{\prime}\right)^{\prime}$. However. for each $n, z_{n} \in U$, whence $z \in X-U^{*}$. This contradicts $\left(X^{\prime}\right)^{\prime} \subset U^{*}$. By passing to a subsequence we can assume $\lim _{n \ldots x} d\left(x_{n}, z\right)$ exists and is positiver. We then have

$$
\begin{aligned}
0 & <\lim _{n \rightarrow+} d\left(x_{n}, z\right)=\lim _{n \rightarrow+} d\left(x_{n}, z_{n}\right) \\
& \leqslant \liminf _{n \cdots} \lambda_{x_{n}} \\
& <\liminf _{n \rightarrow} \varepsilon_{x_{n}} .
\end{aligned}
$$

In particular, there exists $N \in Z^{+}$such that $d\left(x_{i}, z\right)<\varepsilon_{x}$. Thus, unless $\left\{z_{n}\right\}$ is constant eventually, $S_{\varepsilon_{x}}\left|x_{\lambda}\right|$ contains a limit point of X in contradiction to the choice of $\varepsilon_{x_{1}}$. Thus $\left\{z_{n}\right\}$ must be constant eventually, and $z \in H$ follows.

Finally, let $G_{1}=V-H$ and let $G_{2}=X-G_{1}$. From the preceding discussion, G_{1} is open. The set G_{2} consists of the open set H plus the isolated points of X belonging to neither G_{1} nor H. This latter set is clearly open; so, G_{2} is open.

3. The Main Results

The vehicle we use to pass from functions $\left\{f_{i}: i \in I\right\}$ defined on elements of some locally finite open cover $\left\{U_{i}: i \in I\right\}$ of X that are each close locally to a convex valued u.s.c. multifunction Γ to obtain an c-approximate selection f for Γ defined globally is a slight modification of an argument buried in the proof of the main theorem of $|5|$. We single it out as a lemma.

Cellina's Lemma. Let X be a metric space and let Y be a normed lonear space. Let $\Gamma: X \rightarrow \mathrm{CL}(Y)$ be u.s.c. and convex valued. Suppose there exists a locally finite open cover $\left\{U_{i}: i \in I\right\}$ of X, and for each $i \in I$ a closed set K_{i}, a point b_{i}, a number λ_{i}, and a function $f_{i}: U_{i} \rightarrow \Gamma\left(b_{i}\right)$ such that
(1) $K_{i} \subset U_{i} \subset S_{1_{i / 2}}\left|b_{i}\right|$.
(2) $\lambda_{i}<\varepsilon$ and $\Gamma\left(S_{A_{i}}\left|b_{i}\right|\right) \subset S_{\varepsilon_{i} / 2}\left|\Gamma\left(b_{i}\right)\right|$.
(3) Whenever $i \neq k$, then $K_{i} \cap U_{k}=\varnothing$.

$$
\begin{equation*}
\delta\left|f_{i}\left(K_{i}\right), \Gamma\left(b_{i}\right)\right| \leqslant \varepsilon / 2 \tag{4}
\end{equation*}
$$

Suppose $\left\{p_{i}(\cdot): i \in I\right\}$ is a partition of unity subordinated to the cover $\left\{U_{i}: i \in I\right\}$. Then the function $f=\sum p_{i} f_{i}$ satisfies $\delta|f, \Gamma| \leqslant i$.

In the proof of the main theorem of $\{5\}, X$ is a metric locally convex space, each set K_{i} is convex, each f_{i} is continuous, and Γ is assumed to have totally bounded values. However, none of these assumptions are used to prove the above lemma (the details of which are left to the reader). a fact we shall now exploit in conjunction with the results of the last section.

Theorem 1. Let X be a metric space and let Y be a normed linear space. Let $I: X \rightarrow \mathrm{CL}(Y)$ be an u.s.c. multifunction with the following properties:
(1) I maps isolated points of x to singletons.
(2) For each x in $X, f(x)$ is a separable conmex set

Then there easts a Baire class one finction $f: \mathrm{X}+\mathrm{Y}$ whose imit sa multifunction is us.c. and contex valued such that $\delta|, f| \leqslant$.. If the talues of I are each totally bounded, then f can be chosen cominuous.

Proof. We first consider metric spaces \& for which $X X$ is empty. If If is empty, then by (1) I itself is a continuous single valued function, and there is nothing to prove. Otherwise. for each x in Y^{\prime} choose $\lambda_{y}>0$ such that (i) S_{1} fif contains no oher limm point of X (it) \therefore and init it
 point of H belongs to a unique ball $S_{1}|x|$. the open cover $S_{1}, x \mid y$
 subordinated to the cover is the one for which each functon ?" is simply the characteristic function of $S_{i}|x|$. For each x in X^{\prime} let $K, \quad, \quad d(z, x) \times A_{2}$ By Lemma 3 there exists $f: S,|\in| \cdot h(x)$ wh that
 for f_{x} is conex valued and uss. If the walues of I are totaly bounded, then

 limit point of X for which $d(z, x)<\lambda$, By Cellinas lemma $|f, F| H \mid \leqslant$ The hypotheses of Lemmas and are also satisfied: so, the limit set multifunction for f_{3} is both Lis.c. and convex valued. Also. since $D\left(f_{i}\right)$ is is closed discrete set. f is of Baire class one and if each f is continuous, so is I

The points of X not in H are isolated; so. for each such point x the set $\Gamma(x)$ is a singleton. Define $f_{2}: X \cdot H \cdot Y$ by $f_{2}(x)=I(x)$. Finally, define $f: X \rightarrow Y$ by

$$
\begin{aligned}
f(x) & =f_{1}(x) . & & \text { if } \quad x \in H . \\
& =f_{2}(x) . & & \text { if }
\end{aligned} \quad x \in X-H .
$$

Since $D(f)=D\left(f_{1}\right)$, the function f is of Baire class one. If f_{1} is continuous. then since H and $X-H$ form a separation of X, the function f will be continuous, too. For the same reason, the values of f_{1} (resp. f_{2}) have no bearing on the limit sets of $f_{2}\left(\right.$ resp. $\left.f_{1}\right)$, whence the limit set multifunction for f is both u.s.c. and convex valued. Clearly, $\delta|f, I| \leqslant \varepsilon$.

We now consider X for which $\left(X^{\prime}\right)^{\prime}$ is nonempty. For notational simplicity we write F for $\left(X^{\prime}\right)^{\prime}$. For each x in F choose $\lambda_{x}<c$ such that if $z \in X$ and $d(z, x)<\lambda_{x}$, then $\Gamma(z) \subset S_{z, 2}|\Gamma(x)|$. Let $W=\bigcup_{\left\{S_{i_{2}}|x|: x \in F ;\right.}$ and let $\left\{V_{i}: i \in I_{n}\right\}$ be a locally finite open refinement of the cover $\left\{S_{1,2}|x|: x \in F\right\}$ of W. Define $I \subset I_{0}$ as follows:

$$
\left.I=i i: i \in l_{0} \text { and } V_{i} \cap F \neq \varnothing\right\}
$$

Set $V=\bigcup\left\{V_{i}: i \in I\right\}$ the collection $\left\{V_{i}: i \in I\right\}$ is a locally finite open cover of V. By Lemma 5 there are open sets G_{1} and G_{2}, such that (i) $G_{1} \cup G_{2}=X$. (ii) $G_{1} \cap G_{2}=\varnothing$, and (iii) $F<G_{1} \in 1^{*}$. For each $i \in I$ set $V_{i}^{*}=G_{1} \cap F_{i}$. Notice that for each index i the open set V_{*}^{*} contains infinitely many limit points of X. Hence, reasoning as in Proposition 1 of $|5|$, there is an injection $i \rightarrow a_{i}$ defined on I such that for each i both $a_{i} \in V_{i}^{*}$ and a_{i} is a limit point of Y. We now proceed as in the proof of the main theorem of $|5|$. There is a collection of pairwise disjoint closed balls $\left\{K_{i}: i \in I\right\}$ such that for each index $i, a, \in \operatorname{int} K, \in V^{*}$. For each i the set

$$
U_{i}=V_{i} \bigcup_{\substack{i \in 1 \\ i, i}} K_{i}
$$

is open and contains K_{i}. Furthermore. $\left\{U_{i}: i \in I\right\}$ is a locally finite refinement of the cover $\left\{V_{i}^{*}: i \in I\right\}$ of G_{1}. Since $\left\{U_{i}: i \in I\right\}$ is a refinement of $\left.\left|S_{i, 2}\right| x \mid ; x \in F\right\}$, for each i we can find b_{i} in F such that for each z in U_{i}. $d\left(z, b_{i}\right)<\frac{1}{2} \lambda_{b_{i}}$. Again by Lemma 3 for each index i there is $f_{i}: U_{i}+\Gamma\left(b_{i}\right)$ such that (i) $\delta\left|f_{i}\left(K_{i}\right), \Gamma\left(b_{i}\right)\right| \leqslant c / 2$, (ii) $D\left(f_{i}\right)=\left\{a_{i}\right\}$, and (iii) the limit set multifunction for f_{i} is both convex valued and u.s.c. If the values of Γ are totally bounded, then each such i_{i} can be chosen continuous. Let $\left\{p_{i}(\cdot): i \in I\right\}$ be a partition of unity subordinated to $\left\{U_{i}: i \in I\right\}$. Since whenever $i \neq k$ we have $K_{i} \cap U_{k}=\varnothing$. Lemmas 1 and 2 and Cellinas lemma all apply: the function $g_{1}: G_{1} \rightarrow Y$ given by $g_{1}=\underline{\text { M }} p_{i} f_{i}$ satisfies $\phi\left|g_{i}, \Gamma\right| G_{1} \mid \leqslant c$, and the limit set multifunction for g_{1} is both us.c. and convex valued. Since $D\left(g_{1}\right)=\left\{a_{i}: i \in I\right\}$. a closed discrete set. g, is of Baire class one. As usual, if for each index i the function f_{i} is continuous, then g, is continuous.

Finally, by the first part of the proof there exists $g_{2}: G_{2} \rightarrow Y$ such that (i) $\delta\left|g_{2}, \Gamma\right| G_{2} \mid \leqslant \varepsilon$. (ii) $D\left(g_{2}\right)$ is a closed discrete set, and (iii) the limit set
multifunction for g_{2} is u.s.c. and convex valued. If f has totally bounded values, then g_{2} can be chosen continuous. The function $f: X \rightarrow Y$ defined by

$$
\begin{aligned}
f(x) & =g_{1}(x) . & & \text { if } x \in G_{1} . \\
& =g_{2}(x) . & & \text { if } x \in G_{2} .
\end{aligned}
$$

is the desired function.

Theorem 2. Let X be a metric space and let $I: X \rightarrow \mathrm{CL}\left(R^{n}\right)$ be a convex valued u.s.c. multifunction mapping isolated points to singletons. Then there exists a function $f: X \rightarrow R^{\prime \prime}$ with a closed graph such that $\delta|f . \Gamma| \leqslant l$.

Proof. Recall that the functions with closed graphs are precisely those with singleton limit sets. Lemma 1 thus applies to this class of functions. Hence, the proof of Theorem 1 goes through intact. except that we invoke Lemma 4 in lieu of Lemma 3.

It should be noticed that in the statement of Theorem 2 it is not claimed that the limit set multifunction for f is u.s.c., nor is it claimed that f is of Baire class one. Indeed, the upper semicontinuity of the limit set multifunction for a function with closed graph implies continuity of the function. On the other hand, by virtue of our next result, the statement that.f is of Baire class one is redundant.

Theorem 3. Let X be a metric space and let Y be a separable locally compact metric space. If $f: X \rightarrow Y$ has a closed graph. then fis of Baire class one.

Proof. The proof of Theorem 1.6.2, of $|10|$ shows that $D(f)$ is a closed set. Let G be an open subset of Y. Since $D(f)$ is closed, $f{ }^{\prime}(G) \cap$ $|X-D(f)|$ is an open subset of X. Since open sets in a metric space are $F_{\text {, }}$ sets. it remains to show that $f^{\prime}(G) \cap D(f)$ is an $F_{t r}$ set. By our assumptions for Y, G may be represented as a countable union of compact sets $G=\bigcup_{i}^{*}, K_{i}$. We claim that for each index i the set $f^{\prime}\left(K_{i}\right) \cap D(f)$ is a closed subset of X. Suppose $\left\{x_{k}\right\}$ is a sequence in $f^{\prime}\left(K_{i}\right) \cap D(f)$ convergent to some point x. Since $D(f)$ is closed. $x \in D(f)$. Since K_{i} is compact, $\left\{f\left(x_{k}\right)\right\}$ has a subsequence convergent to some point y in K_{i}. By definition $y \in L(f, x)$, and since $L(f, x)=\{f(x)\}$, we have $x \in f^{1}\left(K_{i}\right)$.

We leave it to the reader to show that Theorem 3 fails if either "locally compact" is replaced by "complete," or separability is not assumed. We close with a most unfortunate fact of life: even for $X=|0,1|$. if $\operatorname{dim}(Y)>1$ and $\Gamma: X \rightarrow \mathrm{CL}(Y)$ is an u.s.c. compact valued multifunction that is the δ limit of a sequence of continuous functions, we cannot conclude that I has
convex values. (If $\operatorname{dim}(Y)=1$ we can draw this conclusion, provided X is locally connected $|1|$.)

Example 3. We present a sequence $\left\{f_{n}\right\}$ of continuous functions on $|0.1|$ whose graphs converge in the Hausdorff metric to the graph of a compact valued u.s.c. multifunction $\Gamma:|0,1| \rightarrow C L\left(R^{2}\right)$ that fails to have convex values. For each $n \in Z^{+}$define $f_{n}:|0.1| \rightarrow R^{2}$ by

$$
\begin{aligned}
f_{n}(x) & =\left(\sin \frac{1}{x} \cdot 1\right), & & \text { if } \frac{1}{n \pi} \leqslant x \leqslant 1 . \\
& =(0 . n \pi x), & & \text { if } \quad 0 \leqslant x<\frac{1}{n \pi} .
\end{aligned}
$$

Let $T=\{(1,1):-1 \leqslant y \leqslant 1\} \cup\{(0, z): 0 \leqslant z \leqslant 1\}$. Then if $I:|0,1|$, $\mathrm{CL}\left(R^{2}\right)$ is defined by

$$
\begin{aligned}
\Gamma(x) & =T . & & \text { if } x=0 . \\
& =\left\{\left(\sin \frac{1}{x} \cdot 1\right)\right\} & & \text { if } \quad 0<x \leqslant 1 .
\end{aligned}
$$

we have $\lim _{n-} \delta\left|f_{n}, \Gamma\right|=0$.

4. Two Applications of Theorem 1

Let M be a nonempty closed convex subset of a finite dimensional subspace of a normed linear space X. For each x in X the set $P_{y}(x)$ defined by

$$
P_{M}(x)=\left\{y: y \in M \text { and }|x-y|=\inf _{m \in M}\|x-m\|\right\}
$$

is a nonempty compact convex subset of M. Moreover, the assignment $x \rightarrow P_{M}(x)$. called the metric projection of X onto $M|7|$, is u.s.c. Thus. Theorem 1 says that the restriction of this multifunction to any perfect subset of X admits for each $\varepsilon>0$ a continuous ε-approximate selection. In particular, if S is a closed star-shaped set in the space whose convex kernel lies in some finite dimensional subspace, then the metric projection of S onto its kernel can be approximated by continuous functions in the Hausdorff metric.

For an application of the general version of Theorem 1. let X be a separable Hilbert space and let C be a closed convex subset of X. For each x in C the normal cone to C at $x|16|$ is defined by

$$
N_{c}(x)=\{y: y \in X \text { and for each } w \in C, y \cdot(w-x) \leqslant 0\} .
$$

The normal cone to C at x is a closed convex set closed under addition and multiplication by nonnegative scalars: evidently, the nonzero vectors in $N_{C}(x)$ determine the closed support hyperplanes to C at x. Although $x \rightarrow N_{d}(x)$ (as a multifunction on C) has a closed graph. it is not in generat u.s.c. However, if X is finite dimensional, it is not hard to show using the compactness of the unit ball that the normal cone multifunction is actually u.s.c. Hence. the general version of Theorem I ensures for each positive : the existence of an u.s.c. convex valued multifunction that admits a Baire ctos one dense selection which a approximates $\because \cdot(x)$ on $(C$

Referlences

1. G. Berr. The approximation of real functions in the Hausdoff metric in appear.
2. G. Berr, Dense selections, J. Mah Anal. Apmi 95 (1483). 416.427.
3. C. Berge. "Topological Spaces." Olier \& Boyd. Fuhburgh. 1963
4. A. Cfilins. A theorem on the approximation of sompact multivalied nappinse, Rewe. Accad. Nat Lincei (8) 47 (1964), 429 43:
 Vaz. Lincel (8) 48 (1970). 412416

 press.
 Ahat Appl 69 (1974). 146 15天.

 Prowdence. R I. 1981

 $19(1968), 285293$.
 Math. And Appl. 62 (1978), 104-113.

 859.903
5. D. Whovik. Survey of measurable selectons: An upate in Measure Theors Oberwolfach 1979." Springer Verlag. Berlin. 1980
